Origin of Activity and Stability Enhancement for Ag3PO4 Photocatalyst after Calcination
نویسندگان
چکیده
Pristine Ag₃PO₄ microspheres were synthesized by a co-precipitation method, followed by being calcined at different temperatures to obtain a series of calcined Ag₃PO₄ photocatalysts. This work aims to investigate the origin of activity and stability enhancement for Ag₃PO₄ photocatalyst after calcination based on the systematical analyses of the structures, morphologies, chemical states of elements, oxygen defects, optical absorption properties, separation and transfer of photogenerated electron-hole pairs, and active species. The results indicate that oxygen vacancies (VO˙˙) are created and metallic silver nanoparticles (Ag NPs) are formed by the reaction of partial Ag⁺ in Ag₃PO₄ semiconductor with the thermally excited electrons from Ag₃PO₄ and then deposited on the surface of Ag₃PO₄ microspheres during the calcination process. Among the calcined Ag₃PO₄ samples, the Ag₃PO₄-200 sample exhibits the best photocatalytic activity and greatly enhanced photocatalytic stability for photodegradation of methylene blue (MB) solution under visible light irradiation. Oxygen vacancies play a significantly positive role in the enhancement of photocatalytic activity, while metallic Ag has a very important effect on improving the photocatalytic stability. Overall, the present work provides some powerful evidences and a deep understanding on the origin of activity and stability enhancement for the Ag₃PO₄ photocatalyst after calcination.
منابع مشابه
Heterostructured Ag3PO4/AgBr/Ag plasmonic photocatalyst with enhanced photocatalytic activity and stability under visible light.
A heterostructured Ag3PO4/AgBr/Ag plasmonic photocatalyst was prepared by a rational in situ ion exchange reaction between Ag3PO4 micro-cubes and Br(-) in aqueous solution followed by photoreduction. The photocatalytic activities of obtained photocatalysts were measured by the degradation of methyl orange (MO) and methylene blue (MB) under visible light irradiation (λ≥ 400 nm). Compared to AgBr...
متن کاملSynthesis, Characterization, and Efficiency Testing of Ag3PO4/TiO2 Heterogeneous Nano-Photocatalyst in Removing Gaseous Formaldehyde as an Occupational Carcinogen
Introduction: Rapid population growth and industrialization have increased chemical pollutants. Some studies show that employee exposure to formaldehyde in industrial places, hospitals, and laboratory settings is more than the allowed limits. Therefore, it is necessary to implement a proper control system to reduce this exposure. This study aimed to synthesize Ag3PO4/TiO2 nanocomposite, determi...
متن کاملPhotocatalytic activity of attapulgite–TiO2–Ag3PO4 ternary nanocomposite for degradation of Rhodamine B under simulated solar irradiation
An excellent ternary composite photocatalyst consisting of silver orthophosphate (Ag3PO4), attapulgite (ATP), and TiO2 was synthesized, in which heterojunction was formed between dissimilar semiconductors to promote the separation of photo-generated charges. The ATP/TiO2/Ag3PO4 composite was characterized by SEM, XRD, and UV-vis diffuse reflectance spectroscopy. The co-deposition of Ag3PO4 and ...
متن کاملSynthesis of magnetically separable Ag3PO4/TiO2/Fe3O4 heterostructure with enhanced photocatalytic performance under visible light for photoinactivation of bacteria.
Silver orthophosphate (Ag3PO4) is a low-band-gap photocatalyst that has received considerable research interest in recent years. In this work, the magnetic Ag3PO4/TiO2/Fe3O4 heterostructured nanocomposite was synthesized. The nanocomposite was found to exhibit markedly enhanced photocatalytic activity, cycling stability, and long-term durability in the photodegradation of acid orange 7 (AO7) un...
متن کاملSynthesis of Ag3PO4/G-C3N4 Composite with Enhanced Photocatalytic Performance for the Photodegradation of Diclofenac under Visible Light Irradiation
A new visible-light-driven heterojunction Ag3PO4/g-C3N4 was prepared by a simple deposition-precipitation method for the degradation analysis of diclofenac (DCF), a model drug component, under visible-light irradiation. The heterojunction photocatalysts were characterized by a suite of tools. The results revealed that the introduction of Ag3PO4 on the surface of g-C3N4 greatly promoted its stab...
متن کامل